Микроорганизмы:

Стрептококк

News image

Стрептококк (лат. Streptococcus) — род шаровидных или овоидных аспорогенных грамположительных хемоорганотрофных факуль...

Бифидобактерии

News image

Бифидобактерии – нормальные обитатели толстого кишечника человека. Это преобладающая в пищеварительном тракте флора, п...

Основы вирусологии:

Микрофлора воздуха

Микрофлора воздуха зависит от микрофлоры воды и почвы, над которыми расположены слои воздуха. В почве и воде микробы м...

Цитомегаповирусная инфекция

Несмотря на то, что прошло более столетия после первого описания цитомегалии и треть века после открытия цито-мегалови...

САНИТАРНАЯ МИКРОБИОЛОГИЯ. Санитарно-микробиологические исследования

Микроорганизмы, и в первую очередь бактерии, распространены в природе гораздо шире, чем другие живые существа. Благода...

Авторизация





Вирусы под микроскопом

вирусы под микроскопом

Наверное, первым, кому удалось разглядеть вирусы, был шотлан­дский врач Джон Броун Бист. В 1887 году при исследовании под микроскопом содержимого оспенного волдыря он разглядел ка­кие-то крохотные точечки. По всей вероятности, это были виру­сы коровьей оспы, самые крупные из известных вирусов.

Для того чтобы можно было хорошо разглядеть типичный ви­рус или хотя бы как-то его разглядеть, нужно приспособление несколько лучшее, чем обычный микроскоп. Таким приспособ­лением оказался электронный микроскоп, изобретенный в кон­це 30-х годов XX века. Электронный микроскоп обладал спо­собностью увеличивать предметы в 100 000 раз, с его помощью можно было разглядеть объекты, имеющие 0,001 микрона в диа­метре.

Однако электронный микроскоп имел свои недостатки. Объек­ты при рассмотрении должны были находиться в вакууме, что приводило к неизбежной их дегидратации и, следовательно, из­менению формы. Срезы таких объектов, как клетки, должны были быть максимально тонкими. Изображение получалось толь­ко двумерным; электроны имели склонность проходить через весь биологический материал, поэтому его изображение сливалось с фоном.

В 1944 году американские ученые, астроном и физик Робли Кук Уильямс и электронный микроскопист Ральф Уолтер Грейстоун Викофф, совместно нашли остроумное решение этой про­блемы. Первому идея пришла в голову Уильямсу, то есть он был астрономом и знал, что кратеры и вулканы на Луне обретают контрастное изображение только тогда, когда солнечные лучи падают на них под углом благодаря теням; следовательно, и трех­мерное изображение вирусов можно получить, если удастся за­фиксировать тени от них. Ученые решили обработать вирусные частицы парами металла, направленными под углом к предмет­ному столику микроскопа. Поток частиц металла оставлял за каж­дой вирусной частицей чистую поверхность - «тень» вируса. Дли­на этой тени была пропорциональна высоте вирусной частицы, а благодаря тонкой пленке металла, покрывавшей вирус, вирусные частицы четко отличались от фона. По форме тени можно было судить о форме самого вируса.

Вирус коровьей оспы по форме оказался похожим на бочонок, его диаметр, как установили ученые, составил 0,25 микрометра, что приблизительно соответствовало размеру самой маленькой риккетсии. Вирус табачной мозаики, оказалось, походил на па­лочку 0,28 микрометра длиной и 0,015 микрометра в диаметре. Мелкие вирусы, такие, как вирусы полиомиелита, желтой лихо­радки и ящура, представляли собой крошечные шарики, диаметр которых варьировался от 0,020 до 0,025 микрометра. То есть их размер был значительно меньше размера одного человеческого гена. Вес такой вирусной частицы превышал вес белковой моле­кулы среднего размера всего лишь в 100 раз. Масса вируса кос­тёрной мозаики (костёр - однолетние травы рода злаков. - При­меч. пер.), наименьшего из тех, которые удалось охарактеризовать, составляет всего 4 500 000. Этот вирус в 10 раз меньше вируса табачной мозаики, что позволяет ему претендовать на звание са­мого маленького живого существа.

В 1959 году финский цитолог (цитология - наука о клетке) Алвар П. Вилска разработал новую конструкцию электронного микроскопа, изображения в котором получались при использовании электронов относительно низких скоростей. Электроны, движущиеся с низкими скоростями, обладают менее ­выраженной проникающей способностью по сравнению с высокоскоростными частицами, что позволило рассмотреть некоторые детали внутреннего строения вирусов. В 1960 году французский цитолог Гастон Дю По придумал способ, как получить электронно-микроскопическое изображение бактерий: он поместил их в капсулы, наполненные воздухом, что позволило рассмотреть под электронным микроскопом живые клетки. Правда, без напыления металла многие детали их строения оказались неразличимыми.




Читайте:


Добавить комментарий


Защитный код
Обновить

Микроорганизмы и человек:

Борьба с ожирением

Результаты дальнейшего изучения учеными изменений симбиотического мышино-микробного организма блестяще подтвердили гип...

Кто знает причину болезней?

Всемирная Организация Здравоохранения обнародовала доклады, из которых следует, что до 80% всех существующих заболеван...

От младенчества до старости

Несмотря на то что видовой состав микроорганизмов кишечника достаточно однообразен, количественное соотношение предста...

Иммунитет:

Иммунитет собак

В любом животном организме иммунитет обеспечивает его защиту от любых вирусов, бактерий, чужеродных веществ, патогенных ...

Продукты: иммунитет повышается целенаправленно

Наш организм часто подвержен негативным погодным влияниям, экологическим, стрессам, но именно в межсезонье он особенно у...

Детский иммунитет

Основные понятия об иммунитете Чтобы четко понимать, как улучшить состояние иммунной системы ребенка, необходимо знат...