ДНК у эукариот - не единственное их отличие от прокариотВсе организмы, которые заселяют нашу планету, состоят из клеток. Зависимо от организации, организмы разделяются на два т... |
Термофильные стрептококки![]() К ним относятся Streptococcus thermophilus. Термофильные стрептококки по сравнению с мезофильными лучше развиваются пр... |
Кл. СпоровикиВ этот класс включены паразитические виды простейших. В процессе своего развития имеют стадию так называемой споры, ко... |
Вирус краснухиКраснуха (устар. — германская корь, коревая краснуха) — острозаразное вирусное заболевание, характеризующееся слабо вы... |
Дезинфекция и стерилизацияХирургические инструменты, соприкасающиеся с кровью, гноем и другими биологическими жидкостями больного, должны быть о... |
Наверное, первым, кому удалось разглядеть вирусы, был шотландский врач Джон Броун Бист. В 1887 году при исследовании под микроскопом содержимого оспенного волдыря он разглядел какие-то крохотные точечки. По всей вероятности, это были вирусы коровьей оспы, самые крупные из известных вирусов.
Для того чтобы можно было хорошо разглядеть типичный вирус или хотя бы как-то его разглядеть, нужно приспособление несколько лучшее, чем обычный микроскоп. Таким приспособлением оказался электронный микроскоп, изобретенный в конце 30-х годов XX века. Электронный микроскоп обладал способностью увеличивать предметы в 100 000 раз, с его помощью можно было разглядеть объекты, имеющие 0,001 микрона в диаметре.
Однако электронный микроскоп имел свои недостатки. Объекты при рассмотрении должны были находиться в вакууме, что приводило к неизбежной их дегидратации и, следовательно, изменению формы. Срезы таких объектов, как клетки, должны были быть максимально тонкими. Изображение получалось только двумерным; электроны имели склонность проходить через весь биологический материал, поэтому его изображение сливалось с фоном.
В 1944 году американские ученые, астроном и физик Робли Кук Уильямс и электронный микроскопист Ральф Уолтер Грейстоун Викофф, совместно нашли остроумное решение этой проблемы. Первому идея пришла в голову Уильямсу, то есть он был астрономом и знал, что кратеры и вулканы на Луне обретают контрастное изображение только тогда, когда солнечные лучи падают на них под углом благодаря теням; следовательно, и трехмерное изображение вирусов можно получить, если удастся зафиксировать тени от них. Ученые решили обработать вирусные частицы парами металла, направленными под углом к предметному столику микроскопа. Поток частиц металла оставлял за каждой вирусной частицей чистую поверхность - «тень» вируса. Длина этой тени была пропорциональна высоте вирусной частицы, а благодаря тонкой пленке металла, покрывавшей вирус, вирусные частицы четко отличались от фона. По форме тени можно было судить о форме самого вируса.
Вирус коровьей оспы по форме оказался похожим на бочонок, его диаметр, как установили ученые, составил 0,25 микрометра, что приблизительно соответствовало размеру самой маленькой риккетсии. Вирус табачной мозаики, оказалось, походил на палочку 0,28 микрометра длиной и 0,015 микрометра в диаметре. Мелкие вирусы, такие, как вирусы полиомиелита, желтой лихорадки и ящура, представляли собой крошечные шарики, диаметр которых варьировался от 0,020 до 0,025 микрометра. То есть их размер был значительно меньше размера одного человеческого гена. Вес такой вирусной частицы превышал вес белковой молекулы среднего размера всего лишь в 100 раз. Масса вируса костёрной мозаики (костёр - однолетние травы рода злаков. - Примеч. пер.), наименьшего из тех, которые удалось охарактеризовать, составляет всего 4 500 000. Этот вирус в 10 раз меньше вируса табачной мозаики, что позволяет ему претендовать на звание самого маленького живого существа.
В 1959 году финский цитолог (цитология - наука о клетке) Алвар П. Вилска разработал новую конструкцию электронного микроскопа, изображения в котором получались при использовании электронов относительно низких скоростей. Электроны, движущиеся с низкими скоростями, обладают менее выраженной проникающей способностью по сравнению с высокоскоростными частицами, что позволило рассмотреть некоторые детали внутреннего строения вирусов. В 1960 году французский цитолог Гастон Дю По придумал способ, как получить электронно-микроскопическое изображение бактерий: он поместил их в капсулы, наполненные воздухом, что позволило рассмотреть под электронным микроскопом живые клетки. Правда, без напыления металла многие детали их строения оказались неразличимыми.
| Читайте: |
|---|
Микробного в нас больше, чем человеческогоКроме изучения отдельных видов кишечной микрофлоры, в последние годы многие исследователи изучают бактериальный метаге... |
Глубокоуважаемый микробВсего сто лет назад микробов, живущих в человеческом кишечнике, считали нахлебниками и вредителями. В последние годы ч... |
Уничтожаем микроорганизмы?Американская писательница Рэйчел Луиза Карсон, автор научно-популярных произведений, в 1962 году выпустила книгу «Без... |
Проблемы трансплантацииПосле пересадки сердца она стала на некоторое время повсеместным увлечением хирургов, но к концу 1969 года энтузиазм э... |
Образование антителНо каким же образом в организме образуются антитела в ответ на попадание в него антигенов? Эрлих считал, что в организ... |
ИммунитетОбщность всех защитных функций организма, позволяющих ему противостоять всем генетически чужеродным вирусам, бактериям, ... |