Микроорганизмы:

Микроорганизмы

News image

Термин «микроорганизм» применяется к группе растений и животных микроскопического и субмикроскопического размера. Микр...

Бактерии

News image

Бактерии — это очень простая форма растительной жизни, которая состоит из одной живой клетки. Размножение осуществляет...

Основы вирусологии:

Основы медицинской паразитологии. Паразитология

Наука, изучающая паразитов и вызываемые ими заболевания, называется медицинской паразитологией. Организмы, живущие за ...

Клещевой энцефалит

Переносчики — клещи Ixodes persulcatus и Ixodes ricinus. Резервуарами и переносчиками инфекции в природе являются и...

Отбор, направление и подготовка проб для лабораторного исследования

Отбор проб для бактериологического исследования следует производить в стерильные широкогорлые банки, зак - рываемые пе...

Авторизация





Рентгеновский микроскоп

рентгеновский микроскоп

Рентгеновский микроскоп — устройство для исследования очень малых объектов, размеры которых сопоставимы с длиной рентгеновской волны. Основан на использовании электромагнитного излучения с длиной волны от 0,01 до 1 нанометра.

Рентгеновские микроскопы по разрешающей способности находятся между электронными и оптическими микроскопами. Теоретическая разрешающая способность рентгеновского микроскопа достигает 2-20 нанометров, что на два порядка больше разрешающей способности оптического микроскопа (до 20 микрометров). В настоящее время существуют рентгеновские микроскопы с разрешающей способностью около 5 нанометров.

Общие сведения

Разработка рентгеновских микроскопов сопряжена с рядом серьёзных трудностей. Рентгеновские лучи практически невозможно фокусировать обычными линзами. Дело в том, что показатель преломления рентгеновских лучей в различных прозрачных для них средах примерно одинаков и очень мало отличается от единицы. Колебания составляют порядка 10−4 —10 −5. Для сравнения, показатель преломления видимого света в воде при 20 °C примерно равен 1,33. Рентгеновские лучи также не отклоняются электрическими и магнитным полям, что не позволяет использовать для фокусировки электрические или магнитные линзы. Однако, в современной рентгеновской оптике в последнее время появились и уже нашли большое применении линзы, действующие на основе эффекта обратного лучепреломления (основано на различии коэффициентов преломления в конденсированном веществе по отношению к воздуху). Функцию линзы выполняет линзообразная полость внутри материала, получившие название линзы Снигирёва.

Рентгеновские лучи напрямую не воспринимаются человеческим глазом. По этому для наблюдения и фиксации результатов приходится применять технические средства (фототехнику или Электронно-оптические преобразователи).

Первый коммерческий рентгеновский микроскоп был создан в 50 годах XX века американским инженером Стерлингом Ньюбери, сотрудником General Electric. Он представлял собой проекционный микроскоп, для получения изображения в нём применялись фотопластинки.

Виды рентгеновских микроскопов

Существуют два типа рентгеновских микроскопов — отражательные и проекционные. В отражательных микроскопах используется явление преломления рентгеновских лучей при скользящем падении. Проекционные микроскопы используют высокую проникающую способность рентгеновских лучей. В них изучаемый объект помещается перед источником излучения просвечивается рентгеновскими лучами. Благодаря тому, что коэффициент поглощения рентгеновских лучей зависит от размеров атомов, через которые они проходят, такой метод позволяет получать информацию не только о структуре, но и о химическом составе изучаемого объекта.

Проекционные

Проекционные рентгеновские микроскопы представляют собой камеру, в противоположных концах которой располагаются источник излучения и регистрирующее устройство. Для получения чёткого изображения необходимо, чтобы угловая апертура источника была как можно меньше.

Увеличение (М) в методе рентгеновской проекционной микроскопии определяется отношением расстояний от источника рентгеновского излучения до детектора (b) к расстоянию от источника до объекта (а):

М = b/a

В микроскопах такого типа до недавнего времени не использовались дополнительные оптические приборы. Основным способом получить максимальное увеличение является размещение объекта на минимально возможном расстоянии от источника рентгеновского излучения. Для этого фокус трубки располагается непосредственно на окне рентгеновской трубки либо на вершине иглы анода, помещенной вблизи окна трубки. В последнее время ведутся разработки микроскопов, использующих зонные пластинки Френеля для фокусировки изображения. Такие микроскопы имеют разрешающую способность до 30 нанометров.

Отражательные

В микроскопах этого типа используются приёмы, позволяющие добиться максимального увеличения, благодаря чему линейное разрешение проекционных рентгеновских микроскопов достигает 0,1—0,5 мкм. В качестве линз в них используется система зеркал. Изображения, создаваемые отражательными рентгеновскими микроскопами даже при точном выполнении профиля их зеркал искажаются различными аберрациями оптических систем: астигматизм, кома.

Для фокусировки рентгеновского излучения применяются также изогнутые монокристаллы. Но при этом на качество изображения сказываются структурные несовершенства монокристаллов, а также конечная величина брэгговских углов дифракций.

Отражательные рентгеновские микроскопы не получили широкого распространения из-за технических сложностей их изготовления и эксплуатации.

Область применения

Проекционные микроскопы получили широкое применение в различных сферах науки, включая медицину, минералогию, металловедение.

При помощью рентгеновского проекционного микроскопа можно

Важным достоинством рентгеновских микроскопов является то, что с их помощью можно наблюдать непрепарированные живые клетки.




Читайте:


Добавить комментарий


Защитный код
Обновить

Микроорганизмы и человек:

Первая дезинфекция

Еще до того, как Пастер в 1865г разработал свою теорию бактериальной природы инфекционных заболеваний, венский врач по...

Иммунная система

Среда обитания человека и других живых организмов весьма агрессивна. Нас подстерегают всевозможные вирусы и бактерии, ...

Открытие причины малярии

Из года в год малярия свирепствовала на Земле и уносила больше жизней, чем какое-либо другое инфекционное заболева­ние...

Иммунитет:

Распространение вакцинации

После того как был найден способ предупреждения оспы - вакцина­ция - распространился по Европе со сверхъестественной б...

Детский иммунитет

Основные понятия об иммунитете Чтобы четко понимать, как улучшить состояние иммунной системы ребенка, необходимо знат...

Гамма-глобулины

В 1937 году благодаря появлению электрофоретических методов разделения белков биологи наконец-то обнаружили, с каким к...