Лактобактерии![]() Лактобактерии (лат. Lactobacillus) — род грамположительных анаэробных неспорообразующих молочнокислых бактерий. Также ... |
Микроскопические грибы (плесени)![]() Плесени — это простейшие растения из семейства грибов. Однако они намного сложнее по структуре, чем бактерии или дрожж... |
Вич-инфекцияВозбудителем ВИЧ-инфекции является вирус иммунодефицита человека: ВИЧ — может быть двух типов (1 и 2) (по-английски HI... |
Кл. СпоровикиВ этот класс включены паразитические виды простейших. В процессе своего развития имеют стадию так называемой споры, ко... |
Вирус краснухиКраснуха (устар. — германская корь, коревая краснуха) — острозаразное вирусное заболевание, характеризующееся слабо вы... |
Нанотехнология, появившаяся в 2000 году одновременно с возникновением Национальной нанотехнологической инициативы (оставим этот америкоцентризм на совести авторов – КБ), является следующим шагом на пути человечества к минимизации, которая уже дала нам микроэлектронику, микрочипы и микросхемы. Слово нанотехнология произошло от единицы измерения нанометр, составляющей одну тысячную микрометра (микрона), что является приблизительным размером молекулы. Нанотехнология – изучение, производство и манипуляции над сверхмалыми структурами и приспособлениями, состоящими из одной молекулы, – возникла благодаря созданию микроскопических приборов, обеспечивающих возможность визуализации отдельных молекул, манипулирования ими и измерения возникающих между ними электромагнитных взаимодействий.
Нанобиотехнология объединяет в себе достижения нанотехнологии и молекулярной биологии. Молекулярные биологи помогают нанотехнологам научиться понять и использовать наноструктуры и наномеханизмы, созданные в результате процесса эволюции, длившегося 4 миллиарда лет, – клеточные структуры и биологические молекулы. Использование особых свойств биологических молекул и клеточных процессов помогает биотехнологам в достижении целей, перед которыми бессильны другие методы.
Нанотехнологи также пользуются способностью биомолекул к самосборке в наноструктуры. Так, например, липиды способны спонтанно объединяться и формировать жидкие кристаллы.
ДНК используется не только для создания наноструктур, но и в качестве важного компонента наномеханизмов. Вполне вероятно, что ДНК, представляющая собой молекулу, хранящую информацию, может стать основным компонентов компьютеров следующего поколения. Вместо того, чтобы создавать кремниевую основу микросхемы, нанотехнологи смогут использовать двухцепочечную молекулу ДНК, которая представляет собой натуральный каркас для создания наноструктур, а ее способность к высокоспецифичному связыванию позволяет объединять атомы в предсказуемой последовательности, необходимой для создания наноструктуры.
К тому времени, как микропроцессоры и микросхемы превратятся в нанопроцессоры и наносхемы, молекулы ДНК могут заменить используемые в настоящее время неорганические полупроводники. Такие биочипы будут представлять собой ДНК-процессоры, использующие исключительную способность ДНК к хранению информации. Концептуально они будут очень отличаться от биочипов, описанных в одном из следующих разделов. По расчетам, процессор, содержащий 1000 молекул ДНК, в течение четырех месяцев сможет справиться с задачей, для решения которой современному компьютеру требуется не менее ста лет.
Другие биологические молекулы тоже помогают нам в постоянной гонке за созданием способов передачи как можно большего количества информации в как можно меньших объемах. Например, некоторые исследователи используют поглощающие свет молекулы, такие же, как содержатся в сетчатке, для тысячекратного увеличения способности компакт-дисков к хранению информации.
К практическим применениям нанобиотехнологии относятся:
– увеличение скорости и точности диагностики заболеваний;
– создание наноструктур для доставки функциональных молекул в клетки-мишени;
– повышение специфичности и скорости доставки лекарств;
– миниатюризация биосенсоров путем объединения биологического и электронного компонентов в один мельчайший прибор;
– способствование развитию экологически чистых производственных процессов.
| Читайте: |
|---|
Борьба с ожирениемРезультаты дальнейшего изучения учеными изменений симбиотического мышино-микробного организма блестяще подтвердили гип... |
Микробного в нас больше, чем человеческогоКроме изучения отдельных видов кишечной микрофлоры, в последние годы многие исследователи изучают бактериальный метаге... |
Способ существования микроорганизмов в кишечной биопленкеНа сегодня нет точного описания архитектуры микробного сообщества пристеночного слоя кишечника. Попытаемся предложить ... |
Первая трансплантацияВ строгом смысле у каждого человека есть аллергия по отношению к любому иному человеку. Трансплантат - орган или ткань... |
Результат борьбыМиллионы лет борьбы между нами и микробами дали нам сложнейшую иммунную систему. Самое главное в защите против вирусов... |
ИнтерферонВ 1957 году группа британских бактериологов, которую возглавлял Алек Айзеке, показала, что клетки при попадании в них... |