Водоросли прокариотыК прокариотам относятся не только простейшие бактерии, но и сине-зеленые водоросли, сегодня называемые цианобактериями, ... |
Термофильные стрептококкиК ним относятся Streptococcus thermophilus. Термофильные стрептококки по сравнению с мезофильными лучше развиваются пр... |
Клещевой энцефалитПереносчики — клещи Ixodes persulcatus и Ixodes ricinus. Резервуарами и переносчиками инфекции в природе являются и... |
Саннтарно-бактериологический контроль методом исследования смывовОтбор проб и доставка в лабораторию В практике текущего санитарного надзора за объектами общественного питания, торг... |
Кл. СаркодовыеВ этот класс включены обитатели морей, водоемов и почвы. Они относятся к примитивным простейшим, которых называют амеб... |
О тонком строении ядрышка сведения были получены главным образом методом электронной микроскопии. Световая микроскопия давала ограниченный набор сведений о структуре ядрышка из-за их малого размера (1-5 мкм) и недостаточной разрешающей способности данного метода. Из прижизненных наблюдений было видно, что ядрышки обладают высокой плотностью и высоким светопреломлением. В их структуре даже прижизненно видна некоторая неоднородность: описывались нитчатые (нуклеолонемы), гранулярные компоненты (нуклеолини), а также светлые зоны - “вакуоли”. Гистохимически в ядрышках выявлялась РНК, но не ДНК. ДНК в ядрышках выявлялась лишь в периферической их зоне в виде т.н. околоядрышкового хроматина, который мог прилежать к одной из сторон ядрышка, окружать его кольцом, или вообще отсутствовать. Считалось, что околоядрышковый хроматин представляет собой гетерохроматиновые зоны. Кроме того было найдено, что ядрышки имеют некоторое сродство к солям серебра, обладают аргентофилией, могут восстанавливать серебро из различных растворов (нитрат серебра, “аммиачное серебро”, протеинаты серебра). При этом происходит отложение темных осадков исключительно в ядрышках интерфазных клеток, а также в ядрышковых организаторах на митотических хромосомах при делении клетки.
Первые электронномикроскопические работы показали, что ядрышки самых различных объектов несмотря на их разнообразие, построены из одинаковых компонентов: гранулярного и фибриллярного (рис. 87). При этом гранулы в составе ядрышек имели размеры 15-20 нм и были несоизмеримо меньше тех “гранул”, что были видны в световом микроскопе. Кроме гранул в составе ядрышек обнаружили зоны скопления тонких (3-5 нм) фибрилл - диффузная часть ядрышек. Взаимное расположение гранулярных и фибриллярных зон в ядрышке может быть различным. Так, в некоторых случаях, фибриллярный компонент занимает центральную часть ядрышка в виде однородного образования (печень аксолотля, многие ядрышки растительных меристем) или в виде нескольких (3-5) отдельных зон (рис. 88).
Обычно гранулярный компонент (ГК) расположен на периферии ядрышка, но встречаются случаи, когда фибриллярный и гранулярный компонент распределены в ядрышке равномерно. Часто в структуре ядрышек фибриллярно-гранулярные компоненты образуют нитчатые структуры, нуклеолонемы (ядрышковые нити), толщиной около 100-200 нм. Эти нуклеолонемы при достаточном контрастировании могут быть видны даже в световом микроскопе. Ядрышковые нити или нкулеолонемы также неоднородны по своему строению: в них кроме гранул 15 нм, входит множество тонких фибрилл, которые могут образовывать в нуклеолонемах отдельные сгущения.
Неоднородной оказалась структура и диффузного, фибриллярного компонента. Было найдено, что практически во всех типах ядрышек как животных, так и растительных объектов встречаются т.н. фибриллярные центры (ФЦ), участки скопления фибрилл с низкой электронной плотностью, окруженные зоной фибрилл более высокой электронной плотности - плотный фибриллярный компонент (ПФК).
Кроме гранул и фибриллярных участков в структуре ядрышка обнаруживаются хроматиновые компоненты: такие как околоядрышковый хроматин, который может примыкать к ядрышку и даже окружать его. Часто 30 нм фибриллы хроматина по периферии ядрышка заходят в лакуны, между нуклеолонемными участками.
Наконец, в составе ядрышка выявляется белковый остов, матрикс. На ультратонких срезах необработанных ядрышек матрикс не выявляется в виде отдельного компонента, но если экстрагировать из ядрышек РНК, ДНК и белки, связанные с ними, то можно видеть, что ядрышко как таковое, не распадается, не теряет своей общей формы. После таких обработок структура ядрышка представлена рыхлой фибриллярной сетью, заполняющей объем ядрышка.
Таким образом, в структуре ядрышек можно различить следующие пять компонентов: гранулярный, фибриллярные центры, плотный фибриллярный компонент, хроматин, белковый сетчатый матрикс.
Каким же образом распределены внутри ядрышек рДНК, рРНК и белки, где располагаются матрицы для синтеза рРНК, где первичные транскрипты, где предшественники рибосом, зрелые рибосомы - все эти вопросы были решены с применением самых разнообразных молекулярно-биологических и цитологических методов. Один из этих методов, - метод регрессивного окрашивания нуклеиновых кислот, основан на том, что ионы уранила, связанные с ДНК, более легко вымываются со срезов при обработке их хелатоном ЭДТА, чем ионы, связанные с РНК. Это позволяет различить в ядре плотные окрашенные структуры, содержащие РНК и структуры потерявшие окраску, те что содержат ДНК. Так в разнообразных ядрах участки хроматина как конденсированного, так и диффузного теряют окраску, а компоненты, содержащие РНК - сохраняют. В ядре при этом контрастно выделяются разнообразные РНП, содержащиеся в основном объеме ядра и ядрышка. При этом в ядрышках интенсивно окрашены многочисленные гранулы, они окрашены так же, как рибосомы цитоплазмы. Окрашенным является плотный фибриллярный компонент, фибриллярные центры окрашены слабее, а внутриядрышковый и околоядрышковый хроматин выглядят светлыми. Следовательно можно предположить, что как гранулярный компонент, который скорее всего представляет субъединицы рибосом, так и плотный фибриллярный компонент содержат РНК.
Так при короткой пульсовой метке тритированным уридином (3H-уридин), первые следы мечения обнаруживались сначала (через 1-15 мин) в плотном фибриллярном компоненте (ПФК), а затем (до 30 мин) меченым оказывался гранулярный компонент (ГК). Важно отметить, что в фибриллярных центрах (ФЦ) метка не обнаруживалась. Из этого наблюдения был сделан вывод, что 45S пре-рРНК синтезируется в области плотного фибриллярного компонента, а гранулярный компонент ядрышка соответствует прерибосомным частицам (55S-, 40S РНП).
Оставался открытым вопрос о природе фибриллярных центров, окруженных плотными РНК-содержащими фибриллами. Было обнаружено с помощью различных методов (специфическое окрашивание с помощью осмий-амина, ДНКазы, меченной золотом, связыванием меченого актиномицина, прямой молекулярной гибридизацией с меченой рДНК), что в составе фибриллярных центров находится ДНК, ответственная за синтез рРНК. Зоны фибриллярных центров отличаются от остального хроматина тем, что состоят из тонких хроматиновых фибрилл, значительно обедненных гистоном HI (что показано с помощью меченных коллоидным золотом антител).
Эти исследования позволили связать друг с другом данные молекулярной организации транскрибируемых рибосомных генов с данными морфологии ядрышек и выяснить топологию в объеме ядрышка процесса синтеза рибосомной РНК и образования рибосом.
По модели, предложенной Жоссеном (1984), в фибриллярных центрах расположены неактивные рибосомные гены и, возможно, спейсерные участки. Транскрипция пре-рРНК происходит по периферии фибриллярных центров, где плотный фибриллярный компонент и представляет собой 45S пре-рРНК, располагающиеся в виде “елочек” на деконденсированных участках рДНК (рис. 89). После завершения транскрипции 45S РНК теряет связь с транскрипционной единицей на ДНК в зоне плотного фибриллярного компонента, каким-то еще непонятным образом переходит в гранулярную зону, где и происходит процессинг рРНК, образование и созревание рибосомных субъединиц.
Читайте: |
---|
ПробиотикиПробиотики - это живые микроорганизмы, которые при попадании в желудочно-кишечный тракт человека в достаточном количес... |
Селекция микроорганизмовМикроорганизмы (бактерии, микроскопические грибы, простейшие и др.) играют исключительно важную роль в биосфере и хозя... |
Уничтожаем микроорганизмы?Американская писательница Рэйчел Луиза Карсон, автор научно-популярных произведений, в 1962 году выпустила книгу «Без... |
Вакцинация оспыОбитатели одной из ферм в графстве Глостершир имели свое мнение на то, как уберечься от оспы. Они были уверены в том, ... |
Гамма-глобулиныВ 1937 году благодаря появлению электрофоретических методов разделения белков биологи наконец-то обнаружили, с каким к... |
Поиски вакцинПобеда над оспой послужила стимулом для поисков средств против других серьезных инфекционных болезней. Однако все усил... |