Патогенные микроорганизмыПатогенные микроорганизмы это микроорганизмы паразиты, которые наносят вред своему хозяину. Микроорганизмов паразитов, о... |
Митохондрии прокариотМитохондрии – это источник энергии клеток. Митохондрии можно сравнить с «батарейками», которые расположены в цитоплазме ... |
Кл. СаркодовыеВ этот класс включены обитатели морей, водоемов и почвы. Они относятся к примитивным простейшим, которых называют амеб... |
Основы медицинской паразитологии. ПаразитологияНаука, изучающая паразитов и вызываемые ими заболевания, называется медицинской паразитологией. Организмы, живущие за ... |
Основные мероприятия в профилактике внутрибопьничных инфекцийЭффективная профилактика внутрибольничных инфекций должна учитывать решение многокомпонентной задачи, которая включает... |
Во многих разделах данной книги мы уже касались поведения различных клеточных компонентов (хромосом, ядрышек, ядерной оболочки и др.) при клеточном делении. Но вернемся кратко к этим важнейшим процессам, чтобы разобраться в них уже в целом.
У клеток, вступивших в цикл деления, фаза собственно митоза, непрямого деления, занимает относительно короткое время, всего около 0,1 времени клеточного цикла. Так, у делящихся клеток меристемы корней интерфаза может составлять 16-30 ч, а митоз занимать всего 1-3 ч. Цикл эпителиальных клеток кишечника мыши длится около 20-22ч, на митоз же приходится всего 1 ч. При дроблении яйцеклеток весь клеточный период, включая митоз, может быть меньше часа.
Процесс митотического деления клеток принято подразделять на несколько основных фаз: профаза, прометафаза, метафаза, анафаза, телофаза ( 309-314). Границы между этими фазами установить точно очень трудно, потому что сам митоз представляет собой непрерывный процесс и смена фаз происходит очень постепенно: одна их них незаметно переходит в другую. Единственная фаза, которая имеет реальное начало, это анафаза - начало движения хромосом к полюсам. Длительность отдельных фаз митоза различна, наиболее короткая по времени анафаза (табл. ).
Длительность фаз митоза
Объект |
Продолжительность (в мин) |
|||
профаза |
метафаза |
анафаза |
телофаза |
|
Клетки саркомы Иосида |
14 |
31 |
4 |
21 |
Клетки культуры селезенки мыши |
20-35 |
6-15 |
8-14 |
9-26 |
Клетки эндосперма гороха |
40 |
20 |
12 |
110 |
Клетки эндосперма ириса |
40-65 |
10-30 |
12-22 |
40-75 |
Определяется время отдельных фаз митоза лучше всего при прямом наблюдении за делением живых клеток в специальных камерах. Зная время митоза, можно рассчитать длительность отдельных фаз по проценту их встречаемости среди делящихся клеток.
Профаза. Уже в конце G2-периода в клетке начинают происходить значительные перестройки. Точно определить, когда наступает профаза невозможно. Лучшим критерием для начала этой фазы митоза может служить появление в ядрах нитчатых структур – митотических хромосом. Этому событию предшествует повышение активности фосфорилаз, модифицирующих гистоны, и, в первую очередь, гистон Н1. В профазе сестринские хроматиды связаны друг с другом бок о бок с помощью белков-когезинов, которые образуют эти связи еще в S-периоде, во время удвоения хромосом. К поздней профаза связь между сестринскими хроматидами сохраняется только в зоне кинетохоров. В профазных хромосомах уже можно наблюдать зрелые кинетохоры, которые не имеют никаких связей с микротрубочками.
Конденсация хромосом в профазном ядре совпадает с резким уменьшением транскрипционной активности хроматина, которая полностью исчезает к середине профазы. В связи с падением синтеза РНК и конденсацией хроматина происходит инактивация и ядрышковых генов. При этом отдельные фибриллярноые центры сливаются так, что превращаются в ядрышко-образующие участки хромосом, в ядрышковые организаторы. Большая часть ядрышковых белков диссоциирует и в свободном виде встречается в цитоплазме клетки или связывается с поверхностью хромосом.
Одновременно с этим происходит фосфорилирование ряда белков ламины, ядерной оболочки, которая распадается. При этом теряется связь ядерной оболочки с хромосомами. Затем ядерная оболочка фрагментируется на мелкие вакуоли, а поровые комплексы исчезают.
Параллельно этим процессам происходит активация клеточных центров. В начале профазы разбираются микротрубочки в цитоплазме и начинается бурный рост множества астральных микротрубочек вокруг каждой из удвоившиеся диплосом ( 310). Скорость роста микротрубочек в профазе почти в два раза выше роста интерфазных микротрубочек, но лабильность их в 5-10 раз выше цитоплазматических. Так если время полужизни микротрубочек в цитоплазме составляет около 5 мин, то во время первой половины митоза – всего лишь 15 секунд. Здесь еще в большей степени проявляется динамическая нестабильность микротрубочек. Все микротрубочки, отходящие от центросом, растут вперед своими (+)-концами.
Активированные центросомы – будущие полюса веретена деления – начинают расходиться друг от друга на некоторое расстояние. Механизм такого профазного расхождения полюсов заключается в следующем: идущие навстречу друг другу антипараллельные микротрубочки взаимодействуют между собой, что приводит к их большей стабилизации и расталкиванию полюсов ( 315). Это происходит за счет взаимодействия с микротрубочками динеино-подобных белков, которые в центральной части веретена выстраивают межполюсные микротрубочки параллельно друг другу. Одновременно с этим продолжается их полимеризация и рост, которые сопровождаются одновременно с их расталкиванием в направлении к полюсам за счет работы кинезино-подобных белков ( 316). В это время при образовании веретена микротрубочки с кинетохорами хромосом еще не связаны.
В профазе одновременно с разборкой цитоплазматических микротрубочек происходит дезорганизация эндоплазматического ретикулума (он распадается на мелкие вакуоли, лежащие по периферии клетки) и аппарата Гольджи, который теряет свою околоядерную локализацию, распадается на отдельные диктиосомы, без порядка разбросанные в цитоплазме.
Прометафаза. После разрушения ядерной оболочки митотические хромосомы без особого порядка лежат в зоне бывшего ядра. В прометафазе начинается их движение и перемещение, которое в конечном итоге приведет к образованию экваториальной хромосомной “пластинки”, к упорядоченному расположению хромосом в центральной части веретена уже в метафазе. В прометафазе наблюдается постоянное движение хромосом или метакинез, при котором они то приближаются к полюсам, то уходят от них к центру веретена, пока не займут среднее положение, характерное для метафазы (конгрессия хромосом).
В начале прометафазы хромосомы, лежащие ближе к одному из полюсов образующегося веретена, начинают быстро к нему приближаться. Это происходит не одномоментно, но занимает определенное время. Было найдено, что такой первичный асинхронный дрейф хромосом к разным полюсам происходит с помощью микротрубочек. Используя видео-электронное усиление фазового контраста в световом микроскопе, удалось на живых клетках наблюдать, что отдельные отходящие от полюсов микротрубочки случайно достигают одного из кинетохоров хромосомы и связываются с ним, “захватываются” кинетохором. После этого происходит быстрое, со скоростью около 25 мкм\мин, скольжение хромосомы вдоль микротрубочки по направлению к её (-)-концу. Это приводит к тому, что хромосома приближается к полюсу, от которого произошла эта микротрубочка ( 317). Важно отметить, что кинетохоры могут контактировать с боковой поверхностью таких микротрубочек. Во время такого движения хромосомы микротрубочки не разбираются. Вероятнее всего, что за такое быстрое перемещение хромосом отвечает моторный белок, аналогичный цитоплазматическому динеину, обнаруженному в короне кинетохоров.
В результате такого первичного прометафазного движения хромосомы оказываются случайным образом приближены к полюсам веретена, где продолжает происходить образование новых микротрубочек. Очевидно, что чем ближе к центросоме будет находиться хромосомный кинетохор, тем будет выше случайность его взаимодействия с другими микротрубочками. В этом случае новые, растущие (+)-концы микротрубочек “захватываются” зоной короны кинетохора; теперь с кинетохором оказывается связанным пучок из микротрубочек, рост которых продолжается на их (+)-конце. При росте такого пучка кинетохор, а вместе с ним и хромосома, должен перемещаться к центру веретена, удаляться от полюса. Но к этому времени от противоположного полюса ко второму кинетохору другой сестринской хроматиды подрастают свои микротрубочки, пучок которых начинает тянуть хромосому к противоположному полюсу. Наличие такой тянущей силы доказывается тем , что если лазерным микролучом перерезать пучок микротрубочек у одного из кинетохоров, то хромосома начинает двигаться к противоположному полюсу ( 318). В нормальных же условиях хромосома, совершая небольшие перемещения в сторону то одного, то другого полюса, в результате постепенно занимает срединное положение в веретене. В процессе прометафазного дрейфа хромосом происходит удлинение, наращивание микротрубочек на (+)-концах, когда кинетохор движется от полюса, и разборка , укорачивание микротрубочек тоже на (+)-конце, когда сестринский кинетохор движется по направлению к полюсу.
Эти переменные движения хромосом то туда, то сюда приводят к тому, что они в конце концов оказываются в экваторе веретена и выстраиваются в метафазную пластинку (см. рис. 317).
Метафаза ( 311). В метафазе, также как и в других фазах митоза, несмотря на некоторую стабилизацию пучков микротрубочек, продолжается их постоянное обновление за счет сборки и разборки тубулинов. Во время метафазы хромосомы располагаются так, что их кинетохоры обращены к противоположным полюсам. В это же время происходит постоянная переборка и межполюсных микротрубочек, число которых в метафазе достигает максимума. Если на метафазную клетку посмотреть со стороны полюса, то можно видеть, что хромосомы располагаются так, что их центромерные участки обращены к центру веретена, а плечи – к периферии. Такое расположение хромосом носит название “материнской звезды” и характерно для клеток животных ( 319). У растений часто в метафазе хромосомы лежат в экваториальной плоскости веретена без строгого порядка.
К концу метафазы завершается процесс обособления друг от друга сестринских хроматид. Их плечи лежат параллельно друг другу, между ними хорошо видна их разделяющая щель. Последним местом, где контакт между хроматидами сохраняется, является центромера; вплоть до самого конца метафазы хроматиды во всех хромосомах остаются связанными в центромерных участках.
Анафаза начинается внезапно, что хорошо можно наблюдать при витальном исследовании. Анафаза начинается с разъединения всех сразу хромосом в центромерных участках. В это время происходит одновременная деградация центромерных когезинов, которые связывали до этого времени сестринские хроматиды. Такое одновременное отделение хроматид позволяет начать их синхронное расхождение. Хромосомы все вдруг теряют центромерные связки и синхронно начинают удаляться друг от друга по направлению к противоположным полюсам веретена ( 312, 320). Скорость движения хромосом равномерная, она может достигать 0,5-2 мкм/мин. Анафаза – самая короткая стадия митоза (несколько % от всего времени), но за это время происходит целый ряд событий. Главными из них являются сегрегация двух идентичных наборов хромосом и транспорт их в противоположные концы клетки.
При движении хромосом они меняют свою ориентацию и часто принимают V-образную форму. Вершина их направлена в сторону полюсов деления, а плечи как бы откинуты к центру веретена. Если перед анафазой произошел разрыв плеча хромосомы, то во время анафазы оно не будет участвовать в движении хромосом и останется в центральной зоне. Эти наблюдения показали, что именно центромерный участок вместе с кинетохором отвечает за движение хромосом. Создается впечатление, что за центромеру хромосома оттягивается к полюсу. У некоторых высших растений (ожика) нет выраженной центромерной перетяжки, и волокна веретена контактируют со многими точками на поверхности хромосом (полицентрические и голоцентрические хромосомы). В этом случае хромосомы располагаются поперек волокон веретена.
Собственно расхождение хромосом слагается из двух процессов: 1 - расхождение хромосом за счет кинетохорных пучков микротрубочек, 2 – расхождение хромосом вместе с полюсами за счет удлинения межполюсных микротрубочек. Первый из этих процессов носит название “анафаза А”, второй – “анафаза В” ( 320).
Во время анафазы А, когда группы хромосом начинают двигаться по направлению к полюсам, происходит укорачивание кинетохорных пучков микротрубочек. Можно было ожидать, что в этом случае деполимеризация микротрубочек должна происходить на их (-)-концах, концах ближайших к полюсу. Однако было доказано, что микротрубочки действительно разбираются, но большей частью (80%) с (+)-концов, прилежащих к кинетохорам. В эксперименте в живые клетки культуры ткани с помощью метода микроинъекции был введен тубулин, связанный с флуорохромом. Это позволяло витально видеть микротрубочки в составе веретена деления. В начале анафазы пучок веретена одной из хромосом был облучен световым микролучом примерно посередине между полюсом и хромосомой. При таком воздействии исчезает флуоресценция в облученном месте. Наблюдения показали, что облученный участок к полюсу не приближается, но хромосома достигает его при укорачивании кинетохорного пучка ( 321). Следовательно, разборка микротрубочек кинетохорного пучка происходит в основном с (+)-конца, в месте его соединения с кинетохором, а хромосома движется по направлению к (-)-концу микротрубочек, который расположен в зоне центросомы. Оказалось, что такое движение хромосом зависит от присутствия АТФ и от наличия достаточной концентрации ионов Са++. То, что в составе короны кинетохора, в которую вмонтированы (+)-концы микротрубочек, обнаружен белок динеин, позволило считать, что именно он является мотором, который подтягивает хромосому к полюсу. Одновременно с этим происходит деполимеризация кинетохорных микротрубочек на (+)-конце ( 322).
После остановки хромосом у полюсов происходит дополнительное их расхождение за счет удаления полюсов друг от друга (анафаза В). Показано, что при этом происходит наращивание (+)-концов межполюсных микротрубочек, которые могут значительно увеличиваться в длину. Взаимодействие между этими антипараллельными микротрубочками, приводящее к их скольжению друг относительно друга, определяется другими моторными кинезин-подобными белками. Кроме того, полюса дополнительно подтягиваются к периферии клетки за счет взаимодействия с астральными микротрубочками динеино-подобных белков на плазматической мембране.
Последовательность анафаз А и В и их вклад в процесс расхождения хромосом может быть различным у разных объектов. Так, у млекопитающих стадии А и В протекают практически одновременно. У простейших В анафаза может приводить к 15-кратному увеличению длины веретена. В растительных клетках стадия В отсутствует.
Телофаза начинается с остановки хромосом (ранняя телофаза, поздняя анафаза) ( 313, 314) и кончается началом реконструкции нового интерфазного ядра (ранний G1-период) и разделением исходной клетки на две дочерние (цитокинез) (таб. ).
В ранней телофазе хромосомы, не меняя своей ориентации (центромерные участки – к полюсу, теломерные – к центру веретена), начинают деконденсироваться и увеличиваться в объеме. В местах их контактов с мембранными пузырьками цитоплазмы начинает строиться новая ядерная оболочка, которая раньше всего образуется на латеральных поверхностях хромосом и позже – в центромерных и теломерных участках. После замыкания ядерной оболочки начинается формирование новых ядрышек. Клетка переходит в G1-период новой интерфазы.
В телофазе начинается и заканчивается процесс разрушения митотического аппарата – разборка микротрубочек. Он идет от полюсов к экватору бывшей клетки: именно в средней части веретена микротрубочки сохраняются дольше всего (остаточное тельце).
Одно из главных событий телофазы – разделение клеточного тела, цитотомия или цитокинез. Выше уже говорилось, что у растений деление клетки происходит путем внутриклеточного образования клеточной перегородки, а у клеток животных – путем перетяжки, впячивания плазматической мембраны внутрь клетки.
Митоз не всегда заканчивается разделением тела клетки. Так, в эндосперме многих растений могут некоторое время идти множественные процессы митотического деления ядер без деления цитоплазмы: образуется гигантский многоядерный симпласт. Так же без цитотомии синхронно делятся многочисленные ядра плазмодиев миксомицетов. На ранних этапах развития зародышей некоторых насекомых также происходит неоднократное деление ядер без деления цитоплазмы.
В большинстве случаев закладка перетяжки при делении клеток животных происходит строго в экваториальной плоскости веретена. Здесь в конце анафазы, в начале телофазы, образуется кортикальное скопление микрофиламентов, которые образуют сократимое кольцо ( 258). В состав микрофиламентов кольца входят актиновые фибриллы и короткие палочковидные молекулы из полимеризованного миозина II. Взаимное скольжение этих компонентов приводит к уменьшению диаметра кольца и к появлению вдавления плазматической мембраны, что в конце приводит к перетяжке исходной клетки надвое.
После цитотомии две новые (дочерние) клетки переходят в стадию G1 клеточного периода. К этому времени возобновляются цитоплазматические синтезы, происходит реставрация вакуолярной системы, диктиосомы аппарата Гольджи снова концентрируются в околоядерной зоне в ассоциации с центросомой. От центросомы начинается отрастание цитоплазматических микротрубочек и восстановление интерфазного цитоскелета.
Читайте: |
---|
Худые и толстыеИсследования, проведенные в лаборатории Джефри Гордона (Школа медицины при Университете Вашингтона, Сент-Луис, Миссури... |
16S PHK — удостоверение личности бактерииПервый этап определения микроорганизмов — их культивирование на питательных средах. Но ряд микробов не желают расти ни... |
Что у нас внутриКодирующие последовательности 16S РНК с помощью полимеразной цепной реакции (ПЦР) извлекали непосредственно из «окружа... |
Сопротивление бактерийПока мы разрабатываем более изощренные оружия против бактерий, те находят все лучшее средства против наших лекарств. Д... |
Чрезмерная защитаДесятки лет тому назад казалось, что мы побороли такие инфекционные заболевания как туберкулез и теперь мы наблюдаем ... |
Результат борьбыМиллионы лет борьбы между нами и микробами дали нам сложнейшую иммунную систему. Самое главное в защите против вирусов... |