Микроорганизмы:

Streptococcus mutans

News image

Streptococcus mutans — грамм-положительная, факультативно анаэробная бактерия, обычно обнаруживаемая в ротовой полости...

Водоросли прокариоты

News image

К прокариотам относятся не только простейшие бактерии, но и сине-зеленые водоросли, сегодня называемые цианобактериями, ...

Основы вирусологии:

Санитарно-микробиологическое исследование объектов окружающей среды в лечебно-профилактических учреж

Объектами исследования при проведении бактериологического контроля лечебно-профилактических учреждений являются: во...

Госпитальные инфекции

Определение понятия. Госпитальными инфекциями являются эндогенные и экзогенные инфекции, приобретенные больными в меду...

Дезинфекция и стерилизация

Хирургические инструменты, соприкасающиеся с кровью, гноем и другими биологическими жидкостями больного, должны быть о...

Авторизация





Биотех оживает

биотех оживает

Бактерии и вирусы могут использоваться как «живые фабрики» по производству наноструктур. Молекулярные наноструктуры – основные элементы нанотехнологии – были реплицированы в бактериальных клетках.


Исследования подтверждают, что молекулярные биосинтетические машины клетки могут быть использованы для массовой продукции сложных структур и устройств для молекулярной инженерии.


Надриан Зееман (Nadrian Seeman) из Нью-Йоркского Университета (New York University) и Гао Ян (Hao Yan) из Аризонского Государственного Университета (Arizona State University) считают, что их метод может привести к соединению нанотехнологий и теории естественного отбора Дарвина, благодаря чему можно будет получить молекулярные структуры, способные эволюционировать.


Эта техника, описанная в журнале Proceedings of the National Academy of Sciences, основывается на том факте, что все наноструктуры в действительности состоят из ДНК – генетического материала живой клетки.


«Это очень интересно», говорит Ченгде Мао (Chengde Mao), ДНК-нанотехнолог из Purdue University в США, «Нас всегда заботила цена получения таких структур в принципе. Однако, имея в руках подобный метод, мы сможем получать их в большом количестве».


В последние годы ДНК считается идеальным материалом для нанотехнологий, поскольку она может быть «запрограммирована» на образование сложных структур, таких, например, как геометрические клетки и упорядоченные сети.


Также возможно создавать подобные молекулярные «машины» с частями, которые могут двигаться под внешним воздействием. Их создание основано на способности ДНК самостоятельно организовываться в определенные структуры благодаря комплементарному соединению пар азотистых оснований, определяющему двунитевую организацию ДНК и ее форму двойной спирали.


Принцип образования пар азотистых оснований позволяет предсказать пространственную структуру данной молекулы ДНК, исходя из ее нуклеотидной последовательности. Таким образом, можно искусственно создавать нити ДНК, которые будут формировать необходимые пространственные структуры.


Этот подход был использован для создания наноблоков ДНК, способных организовываться таким образом, что с их помощью можно совершать вычислительные процедуры, получив нечто вроде механического нанокомпьютера, а также создавать, например, подробные карты мира размером всего в несколько нанометров.


Но создание таких ДНК-наноструктур обычно очень медленно и сложное. Все живые клетки при этом содержат всю необходимую молекулярную машинерию, осуществляющую синтез геномной ДНК со строго определенной структурой и, соответственно, последовательностью нуклеотидов. Это натолкнуло ученых на мысль, что клетки можно «заставить» производить искусственные ДНК.


По сути это сходно с клонированием генетического материала – техникой, которая уже весьма хорошо освоена биотехнологией. Но то, что осуществимо в теории, не всегда легко осуществимо на практике – заставить клетку производить искусственную ДНК – очень сложная задача.


Джеральду Джойсу (Gerald Joyce) и его коллегам из Scripps Research Institute в Калифорнии уже удалось клонировать нить ДНК, которая организуется в октаэдральную клеть. Причем эта ДНК была клонирована в бактерии. Однако для того, чтобы из нее получилась октаэдральная клеть, требовалось еще пять других коротких нитей ДНК, которые не могли быть клонированы подобным образом.


Зееман, Ян и их коллеги также разработали методы репликации ДНК, которые позволяют клонировать ее в лабораторных условиях с помощью ферментов, экстрагированных из клеток. Но они считают, что процесс был бы гораздо быстрее и эффективнее в живых клетках, которые могут реплицироваться экспоненциально.


Чтобы добиться этого, они сконструировали нити ДНК, которые организуются в две сложные наноструктуры: одна – в некое подобие распятия, а вторая – в сложную двуспиральную перевитую структуру, которая называется PX-молекулой, после чего встроили эти ДНК в двуспиральную плазмиду, полученную из бактериофага, и внедрили в бактерию Escherichia coli.


Такая плазмида действует как вирус, инфицировавший бактерию, и эта инфекция может передаваться другим бактериальным клеткам, растущим в культуральной среде, с помощью бактериального вируса, или бактериофага, который называется M13KO7. В конце концов бактерии заполняются копиями вирусной плазмиды, в том числе элемента, кодирующего ДНК наноструктур.


Затем исследователи разрушили клетки и с помощью специфических ферментов (рестриктаз) вырезали ДНК из плазмид, после чего она сама приняла необходимую форму.


Для начала процесса необходимо очень малое количество ДНК, которое может быть «амплифицировано» в совершенно неизменном виде. А бактериальные клетки могут использоваться как мини-фабрики, из которых в любое время можно извлечь необходимое количество материала.


Несмотря на то, что ДНК-наноструктуры в составе живого организма теоретически могут эволюционировать, ученым сначала нужно найти способ дать тем клеткам, которые делают «улучшенные» наноструктуры, преимущество в размножении. Мао считает, что можно разработать наноструктуры с каталитическими свойствами, ускоряющими рост или репликацию бактериальных клеток.


«Пока что мы не рассуждали о функциях таких ДНК-структур», говорит Мао, «Но, если их возможно клонировать, то возможна и их эволюция».

 




Читайте:


Добавить комментарий


Защитный код
Обновить

Микроорганизмы и человек:

Микроорганизмы кишечника

Микроорганизмы кишечника – это несколько сотен видов различных бактерий. В процентном соотношении 25% составляют бифидоб...

Микроорганизмы в решении онкологических проблем

В желудке и кишечнике, общая длина которых составляет более 7 метров, с участием пищеварительных соков идет переварива...

Облигатные анаэробы

Облигатные анаэробы – это такие организмы, которые могут существовать и полноценно расти, размножаться только в условиях...

Иммунитет:

Гамма-глобулины

В 1937 году благодаря появлению электрофоретических методов разделения белков биологи наконец-то обнаружили, с каким к...

Распространение вакцинации

После того как был найден способ предупреждения оспы - вакцина­ция - распространился по Европе со сверхъестественной б...

Вред антител

Очень высокая специфичность антител по отношению к ан­тигенам создает некоторые неудобства в работе иммунной сис­темы....